Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Лазаренко Виктор Анатольевич

Должность: Ректор федеральное государственное бюджетное образовательное учреждение Дата подписания: 16.03.2073 22:41:35 высшего образования Уникальный программный ключ: 45c319b8a032ab3637134215abd1c4 Уникальное учреждение Российской Федерации

(ФГБОУ ВО КГМУ Минздрава России)

УТВЕРЖДЕНО

на заседании кафедры биологической и химической технологии

протокол № 11 от «28» мая 2018 г. заведующий кафедрой биологической и химической технологии

профессор

_ Лазурина Л.П.

УТВЕРЖДЕНО

на заседании методического совета фармацевтического и биотехнологического факультетов протокол № 5 от «29» июня 2018 г. председатель методического совета фармацевтического и биотехнологического факультетов доцент Дроздова И.Л.

РАБОЧАЯ ПРОГРАММА

по тепловым процессам химической технологии

Факультет	Биотехноло	гический	
Направление подготовки	18.03.01 Химическая технология		
	Химическая технология		
Направленность	веществ		
Курс	2	Семестр	3
Трудоемкость (з.е.)	5		
Количество часов всего		180	
Форма промежуточной аттестации	экзамен		

Разработчики рабочей программы:

зав. каф. биологической и химической технологии, д.б.н, профессор. Лазурина Л.П. ассистент каф. биологической и химической технологии Завидовская К.В.

Рабочая программа дисциплины тепловые процессы химической технологии разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 18.03.01 Химическая технология.

1. Цель и задачи дисциплины

Целью дисциплины является изучение фундаментальных законов, являющихся основой функционирования тепловых машин и аппаратов в химической технологии; представлений о рабочих процессах, протекающих в тепловых машинах в химической промышленности и их эффективности; о свойствах рабочих тел и теплоносителей.

Задачами дисциплины являются:

- формирование навыков сбора и анализа информационных исходных данных для проектирования технологических процессов;
- формирование навыков управления технологическими процессами промышленного производства.

2. Место дисциплины в структуре образовательной программы

Дисциплина тепловые процессы химической технологии относится к вариативной части образовательной программы (обязательная дисциплина).

Процесс изучения дисциплины обеспечивает достижение планируемых результатов освоения образовательной программы и направлен на формирование следующих компетенций:

	Компетенция	Логическая связь	
код	формулировка	с дисциплинами	
		учебного плана	
ОПК - 1	Способность и готовность	– Общая и неорганическая химия;	
	использовать основные законы	– Органическая химия;	
	естественнонаучных дисциплин в	– Физическая химия;	
	профессиональной деятельности	– Коллоидная химия;	
		– Латинский язык;	
		– Экология;	
		– Химические реакторы;	
		– Биология в технологии	
		биологически активных веществ;	
		– Микробиология в технологии	
		биологически активных веществ;	
		-Фармакологические аспекты	
		биологически активных веществ	
ПК – 1	Способность и готовность	– Прикладная механика;	
	осуществлять технологический	- Процессы и аппараты химической	
	процесс в соответствии с регламентом	технологии;	
	и использовать технические средства	-Основные процессы в синтезе	
	для измерения основных параметров	биологически активных веществ;	
	технологического процесса, свойств	- Основы технологии лекарственных	
	сырья и продукции	препаратов;	
		-Общая биотехнология в получении	
		биологически активных веществ;	
		-Технология выделения и очистки	
		биологически активных веществ;	

		 Приемы получения особо чистых субстанций
ПК – 19	Готовность использовать знания основных физических теорий для решения возникающих физических задач, самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления	 Физика; Процессы и аппараты химической технологии; Электротехника и промышленная электроника; Моделирование химикотехнологических процессов

Содержание компетенций (этапов формирования компетенций)

IC -	Voz. — Формулировие — Этапы формирования и индикаторы достижен			компетенции
Код компетенции	Формулировка компетенции	Знает	Умеет	Владеет (имеет практический опыт)
1	2	3	4	5
ОПК-1	Способность и готовность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности	- основные законы естественнонаучных дисциплин в профессиональной деятельности	- использовать основные законы естественнонаучных дисциплин в профессиональной деятельности	- основными законами естественнонаучных дисциплин в профессиональной деятельности
ПК-1	Способность и готовность осуществлять технологический процесс в соответствии с регламентом и использовать технические средства для измерения основных параметров технологического процесса, свойств сырья и продукции	- основные понятия технологического регламента - технические средства для измерения основных параметров технологических процессов, свойств сырья и продукции	- применять на практике технологические процессы в соответствии с регламентом и использовать технические средства для измерения основных параметров технологических процессов, свойств сырья и продукции	- основными методами разработки технологического регламента - методами проведения стандартных испытаний по определению физикохимических свойств сырья и продукции
ПК-19	Готовность использовать знания основных физических теорий для решения возникающих физических задач, самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления	- основные физические теории для решения возникающих физических задач, самостоятельного приобретения физических знаний для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления	- использовать знания основных физических теорий для решения возникающих физических задач, самостоятельного приобретения физических знаний для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления	- знаниями основных физических теорий для решения возникающих физических задач, самостоятельного приобретения физических знаний для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления

3. Разделы дисциплины и компетенции, которые формируются при их изучении

Наименование раздела	Содержание раздела		
дисциплины	дисциплины		
1	2	3	
Основные законы	Основные термодинамические параметры состояния. Основные законы идеальных газов. Основные	ОПК - 1	
термодинамики.	свойства газовых смесей. Реальные газы. Первый закон термодинамики. Второй закон термодинамики.	ПК – 1	
Реальные газы.	Теплоемкость газов.	ПК – 19	
Водяной пар.	Особенности ру-диаграммы водяного пара. Основные параметры влажного насыщенного водяного	ОПК - 1	
Влажный воздух.	пара. Основные параметры перегретого пара. Абсолютная влажность, влагосодержание и	ПК – 1	
Zuminien soogym	относительная влажность воздуха. Плотность, удельная газовая постоянная, удельная энтальпия влажного воздуха. <i>id</i> -Диаграмма влажного воздуха.	ПК – 19	
Истечение газов и	Первый закон термодинамики в применении к потоку движущегося газа. Располагаемая работа при	ОПК - 1	
паров.	истечении газа. Случаи истечения идеального газа из суживающегося сопла. Дросселирование газа.	ПК – 1	
Дросселирование	Уравнение процесса дросселирования. Эффект Джоуля-Томпсона. Виды компрессоров и процессы в	ПК – 19	
	компрессоре.		
газов и паров.			
Компрессоры			
Циклы тепловых	Циклы двигателей внутреннего сгорания (ДВС). Циклы газотурбинных двигателей (ГТД). Циклы	ОПК - 1	
двигателей. Циклы	реактивного и ракетного двигателей. Идеальный и действительный циклы ПТУ. Циклы ПТУ с	ПК – 1	
паротурбинных	промежуточным перегревом и регенеративным отбором пара. Циклы парогазовой и атомной	ПК – 19	
установок. Циклы	установок. Циклы и устройства прямого преобразования теплоты в электроэнергию. Циклы		
холодильных и	воздушной и парокомпрессорной холодильных установок. Передача теплоты тепловым насосом и		
теплонасосных	тепловой трубой.		
установок			
Вторичные	Промышленные способы получения теплоты и теплоснабжение предприятий. Вторичные	ОПК - 1	
энергоресурсы	энергоресурсы. Их виды и направление использования. Схемы утилизации низкопотенциальных	ПК – 1	
r vp •• Jp • 22	тепловых вторичных энергоресурсов.	ПК – 19	

4. Учебно-тематический план дисциплины (в академических часах)

	Контактная работа		Внеаудиторная		Используемые образовательные технологии, способы и методы		Формы текущего контроля	
Наименование раздела	_	из них		(самостоятельная)	Итого	обучения		успеваемости и
дисциплины	всего	лекции	практические занятия	работа	часов	Традиционные	Интерактивные	промежуточной аттестации
1	2	3	4	5	6	8	9	10
Основные законы	28	14	14	28	56	ЛТ, ПЗ, СИ,		КР, ДЗ, УИ, Т, Пр.,
термодинамики. Реальные						УИРС	-	C
газы.								
Водяной пар.	8	4	4	8	16	ЛТ, ПЗ, СИ,		КР, ДЗ, УИ, Т, Пр.,
Влажный воздух.						УИРС	-	С
Истечение газов и паров.	12	6	6	12	24	ЛТ, ПЗ, СИ,		КР, ДЗ, УИ, Т, Пр.,
Дросселирование газов и						УИРС	-	C
паров. Компрессоры.								
Циклы тепловых	20	10	10	20	40	ЛТ, ПЗ, СИ,		КР, ДЗ, УИ, Т, Пр.,
двигателей. Циклы						УИРС		C
паротурбинных установок.							-	
Циклы холодильных и								
теплонасосных установок								
Вторичные энергоресурсы	4	2	2	4	8	ЛТ, ПЗ, СИ,		КР, ДЗ, УИ, Т, Пр.,
						УИРС	-	С
Экзамен	-	-	-	-	36	-	-	Т, Пр., ПЭ
итого:	-	-	-	-	180	-	-	-

4.1. Используемые образовательные технологии, способы и методы обучения

ЛТ	традиционная лекция
П3	практическое занятие
СИ	самостоятельное изучение тем, отраженных в программе, но не рассмотренных в аудиторных занятиях
УИРС	учебно-исследовательская работа

4.2. Формы текущего контроля успеваемости и промежуточной аттестации

КР	проведение контрольных работ	
ДЗ	проверка выполнения письменных домашних заданий	
УИ	защита учебного исследования	
T	тестирование	
Пр.	оценка освоения практических навыков (умений, владений)	
C	оценка по результатам собеседования (устный опрос)	
ПЭ	оценка по результатам письменного экзамена	

5. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- 1. Зеленцов Д.В. Техническая термодинамика [Электронный ресурс] : учебное пособие / Д.В. Зеленцов. Электрон. текстовые данные. Самара: Самарский государственный архитектурно-строительный университет, ЭБС АСВ, 2012. 140 с. 978-5-9585-0456-5. URL: http://www.iprbookshop.ru/20525.html
- 2. Овчинников Ю.В. Основы технической термодинамики [Электронный ресурс] : учебник / Ю.В. Овчинников. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2010. 293 с. 978-5-7782-1303-6. URL: http://www.iprbookshop.ru/47708.html

Дополнительная литература

- 1. Техническая термодинамика [Электронный ресурс] : методические указания к практическим занятиям / . Электрон. текстовые данные. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2014. 17 с. 2227-8397. URL: http://www.iprbookshop.ru/55163.html
- 3. Епифанов В.С. Техническая термодинамика и теплопередача [Электронный ресурс] : лабораторный практикум / В.С. Епифанов, А.М. Степанов. Электрон. текстовые данные. М. : Московская государственная академия водного транспорта, 2015. 65 с. 2227-8397. URL: http://www.iprbookshop.ru/47961.html
- 4. Амирханов Д.Г. Техническая термодинамика [Электронный ресурс] : учебное пособие / Д.Г. Амирханов, Р.Д. Амирханов. Электрон. текстовые данные. Казань: Казанский национальный исследовательский технологический университет, 2014. 264 с. 978-5-7882-1664-5. URL: http://www.iprbookshop.ru/63486.html

Электронное информационное обеспечение и Интернет-ресурсы

- 1. Научная электронная библиотека «eLIBRARY.RU» https://elibrary.ru/
- 2. Национальная электронная библиотека (НЭБ) http://нэб.рф/
- 3. Консультант плюс https://kurskmed.com/department/library/page/Consultant_Plus
- 4. База данных международного индекса научного цитирования «WEB OF SCIENCE» http://www.webofscience.com/
- 5. Полнотекстовой базе данных «Medline Complete» http://search.ebscohost.com/
- 6. Федеральная электронная медицинская библиотека. http://193.232.7.109/feml
- 7. Полнотекстовая база данных «Polpred.com Обзор СМИ», http://polpred.com/
- 8. Научная электронная библиотека «КиберЛенинка» https://cyberleninka.ru/
- 9. Министерство здравоохранения Российской Федерации https://www.rosminzdrav.ru/
- 10. Всемирная организация здравоохранения http://www.who.int/ru/
- 11. Министерство образования и науки Российской Федерации https://xn--80abucjiibhv9a.xn--p1ai/

6. Материально-техническое обеспечение дисциплины

№	Наименование специальных	Оснащенность специальных помещений и	Перечень лицензионного программного
п\п	помещений и помещений для	помещений для самостоятельной работы	обеспечения.
	самостоятельной работы	-	Реквизиты подтверждающего документа
1.	Российская Федерация, 305041, г. Курск, ул. Ямская, д. 18, 2 этаж, каб. №209	Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: специализированная мебель (учебная мебель, доска, трибуна лекторская); технические средства обучения и демонстрационное оборудование (проектор, ноутбук, экран); учебно-наглядные пособия, обеспечивающие тематические иллюстрации.	 Программа для создания тестов — Adit Testdesk, договор № 444 от 22.06.2010 Программа для организации дистанционного обучения — ISpring Suite 7.1, договор № 652 от 21.09.2015 Пакет офисного ПО – Microsoft Win Office Pro Plus 2010 RUS OLP NL, договор № 548 от 16.08.2010 Операционная система — Microsoft Win Pro 7, договор № 904 от 24.12.2010 Антивирус – Kaspersky Endpoint Security, договор № 832 от 15.10.2018
2.	Российская Федерация, 305041, г. Курск, ул. Ямская, д. 18, 2 этаж, каб. №213	Учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: специализированная мебель (учебная мебель, стол лабораторный химический).	-
3.	Российская Федерация, 305041, г. Курск, ул. Ямская, д. 18, 2 этаж, каб. №222 (лаборатория)	Лаборатории, оснащенные лабораторным оборудованием: специализированная мебель (учебная мебель, доска ученическая, стол компьютерный); технические средства обучения (компьютеры).	1. Программа для создания тестов — Adit Testdesk, договор № 444 от 22.06.2010 2. Программа для организации дистанционного обучения — ISpring Suite 7.1, договор № 652 от 21.09.2015 3. Пакет офисного ПО — Microsoft Win Office Pro Plus 2010 RUS OLP NL, договор № 548 от 16.08.2010 4. Операционная система — Microsoft Win Pro 7, договор № 904 от 24.12.2010 5. Антивирус — Kaspersky Endpoint Security, договор № 832 от 15.10.2018

7. Оценочные средства

Вопросы для письменной части экзамена

- 1. Энергетические ресурсы России и их структура.
- 2. Основные термодинамические параметры состояния. Функции параметров состояния. Интенсивные и экстенсивные параметры состояния.
- 3. Определение термодинамических систем и окружающей среды. Основные виды термодинамических систем. Гомогенные и гетерогенные термодинамические системы. Понятия фаза и компонент термодинамических систем.
- 4. Термодинамический процесс. Равновесные и неравновесные термодинамические процессы.
- 5. Графическое изображение термодинамического процесса и термодинамической поверхности. Изохорный, изобарный и изотермический процессы в PV координатах.
- 6. Понятие «идеальный газ». Характеристическое уравнение состояния идеальных газов. Основные законы идеальных газов.
- 7. Закон Авогадро для идеальных газов.
- 8. Физический смысл удельной газовой постоянной, ее размерность.
- 9. Универсальная газовая постоянная, ее связь с удельной газовой постоянной.
- 10. Основные свойства газовых смесей. Понятие газовой смеси. Закон Дальтона для газовой смеси.
- 11. Способы задания газовых смесей. Соотношение между массовыми и объемными долями.
- 12. Газовая постоянная смеси газов.
- 13. Реальные газы. Понятие «реальный газ», его отличие от идеального. Уравнение Майера-Боголюбова для реальных газов.
- 14. Уравнение Ван-дер-Ваальса как частный случай уравнения Майера-Боголюбова. Природа коэффициентов в уравнении Ван-дер-Ваальса.
- 15. PV диаграмма для реальных газов.
- 16. Три возможных решения (корня) уравнения Ван-дер-Ваальса. Изотерма, соответствующая уравнению Ван-дер-Ваальса в ру-координатах.
- 17. Графическое изображение решения уравнения Ван-дер-Ваальса. Характерные области ру-диаграммы.
- 18. Работа расширения газов. Способы передачи энергии от одного тела к другому.
- 19. Обратимые и необратимые процессы.
- 20. Вывод уравнения работы газа при его расширении. Анализ уравнения работы: положительная и отрицательная работа. Графическое изображение работы на рудиаграмме.
- 21. Первый закон термодинамики для потока.
- 22. Внутренняя энергия. Понятие внутренней энергии газа. Внутренняя энергия газа как сумма отдельных видов энергий.
- 23. Кинетическая составляющая внутренней энергии. Потенциальная составляющая внутренней энергии.
- 24. Графическое изображение изменения внутренней энергии на ру-диаграмме. Внутренняя энергия сложной системы.
- 25. Теплоемкость газов. Понятие полной теплоемкости тела в процессе.
- 26. Различные виды удельной теплоемкости, связь между ними. Теплоемкость как функция процесса.
- 27. Теплоемкости при постоянном объеме и постоянном давлении. Уравнение Майера для идеального газа.
- 28. Коэффициент к и его зависимость от атомарности газа.
- 29. Теплоемкость реальных газов и их смесей. Истинная и средняя теплоемкость реальных газов.

- 30. Удельная теплоемкость смеси газов, заданных массовыми долями. Объемная теплоемкость смеси газов. Молярная теплоемкость смеси газов.
- 31. Аналитическое определение энтропии (вывод из 1-го закона термодинамики).
- 32. Свойства удельной энтропии. Удельная энтропия как функция двух параметров.
- 33. Энтальпия и ее физический смысл. Применение энтальпии для термодинамических расчетов.
- 34. Назначение TS-диаграммы. Изображение состояния системы и термодинамического процесса на диаграмме.
- 35. Обратимые круговые процессы на TS-диаграмме.
- 36. Уравнение состояния газа в изохорном процессе. Изохорный процесс в рукоординатах. Полезная внешняя работа в изохорном процессе. Количество теплоты, участвующее в изохорном процессе. Энтальпия, внутренняя энергия и теплоемкость в изохорном процессе. Изохорный процесс в ТS-координатах.
- 37. Уравнение состояния газа в изобарном процессе. Изобарный процесс в рукоординатах. Удельная работа и удельная располагаемая работа в изобарном процессе. Количество теплоты, участвующее в изобарном процессе. Энтальпия, внутренняя энергия и теплоемкость в изобарном процессе. Изобарный процесс в ТS-координатах.
- 38. Уравнение состояния газа в изотермическом процессе. Изотермический процесс в ру-координатах. Удельная работа и удельная располагаемая работа в изотермическом процессе. Энтальпия, внутренняя энергия и теплоемкость в изотермическом процессе. Изотермический процесс в TS-координатах.
- 39. Вывод уравнения адиабаты. Уравнение адиабаты в дифференциальном виде
- 40. Зависимость между основными термодинамическими параметрами в начале и конце адиабатного процесса.
- 41. Работа изменения объема и располагаемая внешняя работа в адиабатном процессе.
- 42. Изменение внутренней энергии в адиабатном процессе.
- 43. Адиабатный процесс в PV- и TS-координатах.
- 44. Понятие политропного процесса, его связь с другими термодинамическими процессами.
- 45. Вывод уравнения политропы.
- 46. Соотношение между основными параметрами в начале и конце политропного процесса.
- 47. Удельная теплоемкость политропного процесса.
- 48. Удельная работа и удельная располагаемая работа в политропном процессе.
- 49. Энтальпия, внутренняя энергия и теплоемкость в политропном процессе.
- 50. Определение показателя политропы.
- 51. Политропный процесс в PV и TS-координатах.
- 52. Круговые термодинамические процессы, их графическое изображение на рудиаграмме.
- 53. Термический КПД цикла. Холодильный коэффициент цикла.
- 54. Прямой обратимый цикл Карно.
- 55. Обратный обратимый цикл Карно.
- 56. Обобщенный (регенеративный) цикл Карно. Графическое изображение регенеративного цикла Карно.
- 57. Условие получения максимальной работы в цикле. Уравнение полезной работы системы при переходе из начального состояния в равновесное.
- 58. Вывод уравнения максимальной полезной работы и его физический смысл.
- 59. Определение эксергии рабочего тела. Уравнение эксергии. Эксергетический КПД.
- 60. Среднеинтегральная температура. Применение для расчета термического КПД цикла.
- 61. Водяной пар. Понятия «водяной пар», «насыщенный пар», «сухой насыщенный пар», «влажный насыщенный пар», «степень сухости пара».

- 62. Особенности ру-диаграммы водяного пара. Основные параметры жидкости и сухого насыщенного пара.
- 63. Теплота парообразования. Основные параметры влажного насыщенного водяного пара. Основные параметры перегретого пара.
- 64. Применение диаграмм для анализа состояния воды и водяного пара. Методы анализа состояний рабочего тела с помощью диаграмм.
- 65. Таблицы воды и водяного пара, их применение для термодинамических расчетов.
- 66. TS- диаграмма водяного пара. Пограничные кривые, критические точки, линии сухости. Применение TS- диаграммы для термодинамических расчетов.
- 67. IS- диаграмма водяного пара, пограничные кривые, критические точки, линии сухости. Применение IS-диаграммы для термодинамических расчетов.
- 68. Дросселирование газов и паров. Понятие дросселирования. Уравнение процесса дросселирования.
- 69. Эффект Джоуля-Томсона. Дифференциальный и интегральный температурные эффекты дросселирования.
- 70. Дросселирование Ван-дер-Ваальсова газа. Инверсионная кривая.
- 71. Понятие инверсия газов. Температура инверсии. Точка инверсии Ван-дер-Ваальсова газа. Инверсионная кривая Ван-дер-Ваальсова газа.
- 72. Исследование мятия водяного пара по IS-диаграмме.
- 73. Влажный воздух. Понятие влажный воздух. Абсолютная и относительная влажность воздуха. Влагосодержание. Плотность влажного воздуха, удельная энтальпия.
- 74. Применение PV-диаграммы для анализа влажного воздуха.
- 75. Компрессоры. Назначение, схема, принцип работы.
- 76. Теоретическая индикационная диаграмма одноступенчатого поршневого компрессора.
- 77. Техническая работа компрессора.
- 78. Работа на привод компрессора в изотермическом, адиабатном и политропных процессах
- 79. Действительная индикационная диаграмма одноступенчатого поршневого компрессора.
- 80. Многоступенчатые компрессоры. Теоретическая индикационная диаграмма. Степень увеличения давления в ступенях компрессора.
- 81. Определение затраченной работы и отводимой теплоты в многоступенчатых компрессорах.
- 82. Центробежные нагнетатели (турбо- и осевые компрессоры).
- 83. Процессы сжатия в реальном компрессоре.
- 84. Первый закон термодинамики для потока газов и паров.
- 85. Располагаемая работа при истечении газа.
- 86. Критическое давление и критическая скорость истечения.
- 87. Условия течения идеального газа по каналам переменного сечения.
- 88. Условия истечения идеального газа из суживающегося сопла. Сопла и диффузоры.
- 89. Истечение идеального газа из комбинированного сопла Лаваля.
- 90. Истечение газов с учетом трения.
- 91. Цикл Отто.
- 92. Цикл Дизиля.
- 93. Цикл Сабатэ-Тринклера.
- 94. Цикл газотурбинных установок с подводом теплоты при постоянном давлении.
- 95. Цикл газотурбинных установок с подводом теплоты при постоянном объеме.
- 96. Циклы паротурбинных установок (цикл Ренкина).
- 97. Цикл парокомпрессорной холодильной установки
- 98. Цикл пароэжекторной холодильной установки.
- 99. Состав и основные характеристики топлива.

- 100. Теплота сгорания топлива.
- 101. Эксергия топлива.
- 102. Устройство промышленных печей.
- 103. Топливные водяные парогенераторы.
- 104. Энергетическая эффективность высотемпературных топливоиспользующих установок. Термический КПД печи.
- 105. Тепловой баланс котлоагрегата. Термический КПД котлоагрегата

Банк профессионально-ориентированных ситуационных задач для экзамена

Задача 1. В закрытом сосуде находится углекислый газ объемом 0.1 м^3 , начальная температура газа 20^{0}C , давление $100 \text{ K}\Pi a$. Газ нагревается до температуры 300^{0}C . Определите:

- 1. Массу углекислого газа в сосуде.
- 2. Среднюю теплоемкость в процессе.
- 3. Давление в сосуде в конце процесса.
- 4. Количество тепла, подводимое в процессе.
- 5. Изобразите данный процесс на TS диаграмме.

Задача 2. Смесь газов состоит из водорода и угарного газа (CO). Массовая доля водорода равна 67%. Определите:

- 1. Газовую постоянную водорода.
- 2. Газовую постоянную угарного газа.
- 3. Газовую постоянную данной смеси.
- 4. Удельный объем смеси.
- 5. Массу газовой смеси в баллоне объемом 5 л.

Задача 3. Воздух в закрытом сосуде объемом 0.5 м^3 нагревают от начальной температуры 100°C , при начальном давлении 300 кПа. Конечная температура 500°C , определите:

- 1. Теплоемкость воздуха при указанных температурах (по термодинамическим таблицам).
- 2. Среднюю массовую теплоемкость в процессе.
- 3. Массу воздуха в сосуде.
- 4. Удельное количество теплоты, необходимое для нагрева.
- 5. Подведенное количество теплоты в процессе.

Задача 4. Сосуд объемом 200 литров содержит кислород при абсолютном давлении 1000 кПа и температуре 47°C. Необходимо повысить давление в процессе при постоянном объеме до 2000 кПа. Считать теплоемкость переменной величиной. Определите:

- 1. Температуру кислорода в конце процесса.
- 2. Теплоемкость газа (по термодинамической таблице).
- 3. Массу газа в сосуде.
- 4. Изменение энтропии в процессе.
- 5. Количество теплоты, которое нужно подвести в процессе.

Задача 5. В цилиндре двигателя объемом 500 литров находится воздух при избыточном манометрическом давлении 3900 кПа и температуре 1500° C. Барометрическое давление равно 100 кПа. От воздуха отнимается некоторое количество теплоты при постоянном давлении до температуры 200° C. Определите:

- 1. Массу воздуха в цилиндре двигателя.
- 2. Конечный объем воздуха.
- 3. Изменение внутренней энергии.
- 4. Количество отнятой теплоты в процессе.

5. Работу сжатия газа.

Задача 6. В компрессор газотурбинной установки входит 5 кг воздуха с начальными параметрами: давлением $100 \text{ к}\Pi a$, температурой 27°C . Воздух сжимается адиабатно до давления $4000 \text{ к}\Pi a$. Показатель адиабаты считать равным 1,4. Определите:

- 1. Начальный и конечный объемы газа.
- 2. Конечную температуру воздуха.
- 3. Работу сжатия воздуха.
- 4. Изменение внутренней энергии воздуха.
- 5. Изменение энтропии в процессе.

Задача 7. Кислород массой 5 кг при начальных давлении 2000 кПа и температуре 427° C расширяется по политропе до давления 100 кПа и конечной температуры 27° C. Определите:

- 1. Показатель политропы.
- 2. Начальный и конечный объемы кислорода в процессе.
- 3. Количество теплоты, участвующее в процессе.
- 4. Изменение внутренней энергии кислорода.
- 5. Изменение энтропии в процессе.

Задача 8. В закрытом сосуде объемом 0,6 м³ содержится воздух при давлении 0,5 МПа и температуре 20 ⁰C. В результате охлаждения сосуда воздух, содержащийся в нем, теряет 105 КДж теплоты. Принимая теплоемкость воздуха постоянной величиной. Определите:

- 1. Теплоемкость воздуха.
- 2. Массу воздуха в сосуде.
- 3. Температуру газа в конце процесса.
- 4. Давление воздуха в конце процесса.
- 5. Изменение внутренней энергии воздуха в процессе охлаждения.

Задача 9. При постоянной теплоемкости подводят тепло к сосуду объемом 50 литров. Начальные температура и давление соответственно равны 17° C и 200 кПа, конечная температура равна 1027° C, конечное давление 1200 кПа. Определите:

- 1. Среднеинтегральную температуру в процессе.
- 2. Теплоемкость кислорода.
- 3. Изменение энтропии в процессе.
- 4. Массу кислорода в сосуде.
- 5. Подведенное количество теплоты в данном процессе.

Задача 10. Температура продуктов сгорания в топке равна 1827° С. Теплотворная способность мазута Q^{p}_{H} 42000 кДж/кг. В котельной установке вырабатывается пар с температурой 557° С. Температура окружающей среды равна 27° С. Определите:

- 1. Эксергию продуктов сгорания.
- 2. Эксергию вырабатываемого пара.
- 3. Эксергический КПД топочных газов в котельной установке.
- 4. Удельную теплоту вырабатываемого водяного пара.
- 5. Изменение энтропии в процессе сгорания топлива.

Задача 11. В паронагревателе вырабатывается влажный пар в количестве 50 кг/час. Параметры пара на входе: p_1 =8 МПа и x_1 =0,95; на выходе: p_2 = 8 МПа, t_2 =500 0 C. Определите:

- 1. Объем вырабатываемого пара в час.
- 2. Объем влажного пара, получаемого в паронагревателе.

- 3. Теплоту парообразования и удельную энтальпию воды в данных условиях (по термодинамическим таблицам).
- 4. Энтальпию вырабатываемого пара.
- 5. Количество теплоты, получаемое в процессе парообразования.

База типовых тестовых заданий для экзамена

(полная база тестовых заданий хранится на кафедре и в центре тестирования)

1. Укажите правильный ответ

ОБЪЕМНАЯ ТЕПЛОЕМКОСТЬ - ЭТО

- 1. произведение удельной теплоемкости вещества на его молярную массу
- 2. отношение теплоемкости однородного тела к его массе при постоянном объеме
- 3. отношение теплоемкости рабочего тела к его объему
- 4. отношение элементарного количества теплоты к изменению температуры при постоянном объеме
- 5. теплоемкость вещества при постоянном объеме

2. Установите соответствия

ПАРАМЕТРЫ РАБОЧЕГО ТЕЛА ПРИ ДРОССЕЛИРОВАНИИ В ОТВЕРСТИИ МЕНЯЮТСЯ СЛЕДУЮЩИМ ОБРАЗОМ

ПАРАМЕТР ИЗМЕНЕНИЕ

работоспособность	не меняется
скорость потока	увеличивается
давление	уменьшается
энтропия	
температура	

3. Укажите правильные ответы

ОСНОВНАЯ ЦЕЛЬ ТЕРМОДИНАМИЧЕСКОГО РАСЧЕТА КОМПРЕССОРА -ОПРЕДЕЛЕНИЕ

- 1. затрачиваемой удельной работы на получение сжатого газа
- 2. минимального давления, до которого может быть сжат газ
- 3. максимальной температуры сжатия газа
- 4. мощности приводного двигателя
- 5. охлаждающего агента для повышения КПД компресссора
- 6. минимальной температуры сжатия газа
- 7. максимального давления, до которого может быть сжат газ
- 8. теплоты, отводимой стенками компрессора

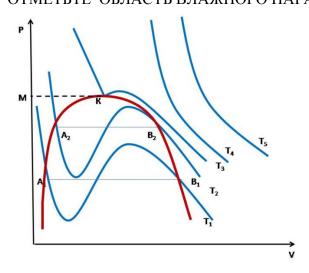
4. Выберите правильный ответ из списка

ТЕРМИЧЕСКИЙ КПД ПРОИЗВОЛЬНОГО ТЕРМОДИНАМИЧЕСКОГО ЦИКЛА(всегда больше, больше или равен, всегда меньше, никогда не равен, меньше или равен)________ КПД ЦИКЛА КАРНО.

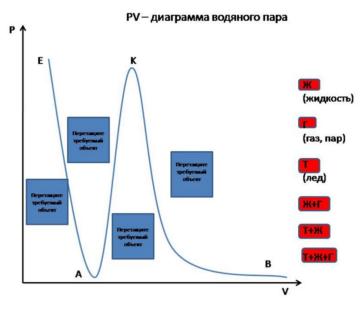
5. Составьте определение понятия

 $\Pi AP - \Im TO$

-газообразное


-тело

- -в состоянии
- -близком
- -соответствующем
- -кипящей
- -испаряющейся
- -сублимирующейся
- -жидкости
- -к


6. Впишите цифрами правильный ответ

ВО СКОЛЬКО РАЗ ТЕМПЕРАТУРА ИНВЕРСИИ РЕАЛЬНЫХ ГАЗОВ, ПОДЧИНЯЮЩИХСЯ УРАВНЕНИЮ ВАН-ДЕР-ВААЛЬСА, ПРИ Р=0 ВЫШЕ КРИТЕСКОЙ ТЕМПЕРАТУРЫ ______

7. Отметьте на иллюстрации требуемый объект ОТМЕТЬТЕ ОБЛАСТЬ ВЛАЖНОГО ПАРА

8. Переместите в закрашенный прямоугольник нужный объект РАССТАВЬТЕ ФАЗЫ НА ПРИВЕДЕННОЙ ДИАГРАММЕ

9. Укажите правильный ответ ПАРЦИАЛЬНЫМ ДАВЛЕНИЕМ ГАЗА НАЗЫВАЮТ

- 1. давление 1 моль газа
- 2. часть общего давления газовой смеси, которая приходится на долю данного газа
- 3. давление газа при нормальных условиях
- 4. давление, которым обладал бы газ, если бы при той же температуре занимал молярный объем

10. Укажите правильный ответ

ОБЪЕМНОЙ ДОЛЕЙ ГАЗА НАЗЫВАЕТСЯ

- 1. отношение объема смеси газов массе каждого газа
- 2. отношение количества вещества каждого газа к объему смеси газов
- 3. отношение плотности каждого газа к массе смеси газов
- 4. отношение парциального объема каждого газа к общему объему смеси газов

11. Укажите правильный ответ

КАКАЯ ИЗ УКАЗАННЫХ СМЕСЕЙ ВСЕГДА ЛЕГЧЕ ВОЗДУХА

- 1. этилен и ацетилен
- 2. этан и водород
- 3. аммиак и кислород
- 4. гелий и аргон

12. Укажите правильный ответ

ПАРЦИАЛЬНЫМ ОБЪЕМОМ ГАЗА НАЗЫВАЮТ

- 1. объем 1 моль газа
- 2. часть общего объема газовой смеси, которая приходится на долю данного газа
- 3. объем газа при нормальных условиях
- 4. объем, который занимал бы газ, если бы находился один при той же температуре и давлении, что и смесь газов

13. Укажите правильный ответ

МАССОВОЙ ДОЛЕЙ ГАЗА НАЗЫВАЕТСЯ

- 1. отношение массы смеси к массе каждого газа
- 2. отношение количества вещества каждого газа к массе смеси
- 3. отношение массы каждого газа к массе смеси
- 4. отношение парциального объема каждого газа к массе смеси

14. Укажите правильный ответ

ПАРЦИАЛЬНОЕ ДАВЛЕНИЕ ГАЗА, ВХОДЯЩЕГО В СМЕСЬ, ЗАДАННОЕ ОБЪЕМНЫМИ ДОЛЯМИ, ОПРЕДЕЛЯЕТСЯ КАК

- 1. $P_i = P_{cM} \cdot \varphi$
- $P_i = \frac{P_{cM}}{\varphi}$
- 3. $P_i = \varphi \cdot \omega$
- 4. $P_i = \frac{\dot{P}_{CM}}{\omega}$

15. Укажите правильный ответ

СУММА МАССОВЫХ ДОЛЕЙ ГАЗОВ, ВХОДЯЩИХ В СМЕСЬ РАВНА

- 1. 100
- 2. 1
- 3. 10
- *4*. 22,4

16. Укажите правильный ответ

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

- 1. $Q=(U_2 U_1) + L$
- 2. $Q=(U_2-U_1)-L$
- 3. $Q=(U_2-U_1)$
- 4. $L=(U_2 U_1) + Q$

17. Укажите правильный ответ

ОБ ИЗМЕНЕНИИ ВНУТРЕННЕЙ ЭНЕРГИИ МОЖНО СУДИТЬ ПО ИЗМЕНЕНИЮ

- 1. скорости движения молекул
- 2. температуры
- 3. объема
- 4. работы

18. Укажите правильный ответ

ТЕПЛОТА, СООБЩЕННАЯ ГАЗУ В НЕКОТОРОМ ПРОЦЕССЕ, В КОТОРОМ ВНУТРЕННЯЯ ЭНЕРГИЯ ГАЗА УМЕНЬШИЛАСЬ НА 300 ДЖ, А ГАЗ СОВЕРШИЛ РАБОТУ 500 ДЖ

- 1. 200 Дж
- 2. 300 Дж
- 3. 500 Дж
- 4. 800 Дж

19. Укажите правильный ответ

В СИСТЕМЕ ИЗ ДВУХ ТЕЛ ТЕПЛО ПЕРЕДАЁТСЯ

- 1. не передаётся
- 2. от более нагретого к менее нагретому
- 3. от менее нагретого к более нагретому
- 4. произвольно в любой момент времени

20. Укажите правильный ответ

СИСТЕМА, КОТОРАЯ НЕ ОБМЕНИВАЕТСЯ С ВНЕШНЕЙ СРЕДОЙ НИ ЭНЕРГИЕЙ, НИ ВЕЩЕСТВОМ, НАЗЫВАЕТСЯ

- 1. изолированная система
- 2. теплоизолированная система
- 3. макросистема
- 4. неизолированная система

21. Укажите правильный ответ

РАСШИРЯЯСЬ, ИДЕАЛЬНЫЙ ГАЗ ПЕРЕДАЛ ОКРУЖАЮЩЕЙ СРЕДЕ 5 КДЖ КОЛИЧЕСТВА ТЕПЛОТЫ. ВНУТРЕННЯЯ ЭНЕРГИЯ ГАЗА УМЕНЬШИЛАСЬ ПРИ ЭТОМ НА 20 КДЖ. КАКУЮ РАБОТУ СОВЕРШИЛ ГАЗ?

- 1. -25 кДж
- 2. 15 кДж
- 3. 25 кДж
- 4. -15 кДж

22. Укажите правильный ответ

МАКСИМАЛЬНАЯ ПОЛЕЗНАЯ РАБОТА СИСТЕМЫ ОПРЕДЕЛЯЕТСЯ:

- 1. начальными параметрами рабочего тела
- 2. начальными параметрами рабочего тела и среды
- 3. начальными параметрами рабочего тела и путем проведения процесса
- 4. зависит только от пути проведения процесса

23. Укажите правильный ответ

ВЛАЖНЫЙ ПАР - ЭТО

- 1. термодинамическая система, состоящая из насыщенной жидкости и насыщенного пара
- 2. термодинамическая система, состоящая из насыщенной жидкости и перегретого пара
- 3. термодинамическая система, состоящая из воздуха и перегретого пара
- 4. термодинамическая система, состоящая из воздуха и насыщенного пара

24. Укажите правильный ответ

ПО ОБРАТНОМУ ЦИКЛУ КАРНО РАБОТАЮТ

- 1. двигатели внутреннего сгорания
- 2. паровые машины
- 3. холодильные машины
- 4. вечный двигатель второго рода

25. Укажите правильный ответ

ДРОССЕЛЬ-ЭФФЕКТ - ЭТО

- 1. отношение изменения температуры реального газа при его дросселировании к изменению давления в этом процессе
- 2. отношение изменения давления идеального газа при его дросселировании к изменению температуры данного газа
- 3. отношение изменения температуры идеального газа при его дросселировании к изменению давления в этом процессе
- 4. отношение изменения давления реального газа при его дросселировании к изменению температуры данного газа

26. Укажите правильный ответ

ТЕРМИЧЕСКИЙ КПД ПРОИЗВОЛЬНОГО ТЕРМОДИНАМИЧЕСКОГО ЦИКЛА:

- 1. всегда больше КПД цикла Карно
- 2. больше или равен КПД цикла Карно
- 3. меньше или равен КПД цикла Карно
- 4. всегда меньше КПД цикла Карно

27. Укажите правильный ответ

ЭКСЕРГИЯ ТОПЛИВА - ЭТО

- 1. суммарная химическая эксергия компонентов топлива
- 2. суммарная химическая эксергия компонентов топлива и эксергия теплоты, выделяющейся при сгорании топлива
- 3. реакционная эксергия компонентов топлива
- 4. эксергия теплоты, выделяющейся при сгорании топлива и реакционная эксергия компонентов топлива

28. Укажите правильный ответ

РАБОТА КОМПРЕССОРА СКЛАДЫВАЕТСЯ ИЗ:

- 1. работы всасывания газа, его сжатие, выталкивание и работы, получаемой при расширении газа, оставшегося во вредном пространстве
- 2. работы на всасывание газа, его сжатие и выталкивание
- 3. работы на сжатие газа и его выталкивание
- 4. работы на сжатие газа

29. Укажите правильный ответ

ЦИКЛ, В КОТОРОМ РАБОЧЕЕ ТЕЛО НЕ ПОДВЕРГАЕТСЯ ХИМИЧЕСКИМ ИЗМЕНЕНИЯМ, НАЗЫВАЮТ:

- 1. прямым
- 2. обратным
- 3. обратимым
- 4. необратимым

30. Укажите правильный ответ

КАК МОЖЕТ ИЗМЕНЯТЬСЯ ТЕМПЕРАТУРА ВЕЩЕСТВА ПРИ ЕГО ДРОССЕЛИРОВАНИИ:

- 1. только уменьшаться
- 2. только увеличиваться
- 3. только остаться постоянной
- 4. увеличиваться, уменьшаться, остаться постоянной