Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Лазаренко Виктор Анатольевич

Должность: Ректор

Дата подписания: 16.03 2023 13:50:07

Уникальный программный ключ:

федеральное государственное бюджетное образовательное учреждение 45c319b8a032ab3637134215abd1c475334767f4 высшего образования «Курский государственный медицинский университет» Министерства здравоохранения Российской Федерации

(ФГБОУ ВО КГМУ Минздрава России)

УТВЕРЖЛЕНО

на заседании кафедры биологической и химической технологии

протокол № 11 от «28» мая 2018г. заведующий кафедрой биологической и химической технологии

Лазурина Л.П.

УТВЕРЖДЕНО

на заседании методического совета фармацевтического и биотехнологического факультетов

протокол № 5 от «29» июня 2018 г. председатель методического совета фармацевтического и биотехнологического факультетов

доцент *Оеш* Дроздова И.Л.

РАБОЧАЯ ПРОГРАММА

по процессам и аппаратам биотехнологических производств

Факультет биотехнологический Направление подготовки 19.03.01 Биотехнология Направленность Биотехнология биологически активных веществ

Kypc - 3Семестр -5,6

Трудоемкость (з.е.) - 8

Количество часов: всего - 288

Форма промежуточной аттестации – экзамен

Курсовой проект

Разработчики рабочей программы: зав. каф. биологической и химической технологии, д.б.н., профессор Лазурина Л.П., доцент кафедры, к.т.н., Джанчатова Н.В.

Рабочая программа дисциплины Процессы и аппараты биотехнологических производств разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 19.03.01 Биотехнология

1. Цель и задачи дисциплины

Основная цель преподавания дисциплины формирование профессиональных компетенций и приобретение студентами знаний в биотехнологии, оценки основных процессов эффективности рационального оптимизации биотехнологических выбора конструкции и научного расчета машин и аппаратов биотехнологии, целесообразной промышленной эксплуатации также методов производственного оборудования достижения максимальной ДЛЯ производительности при минимальных затратах.

Задачи дисциплины:

- изучение студентами и приобретение знаний офизико-химических закономерностях и кинетике процессов и аппаратов биотехнологии, основных методах расчета типовых аппаратов биотехнологии, конструкции аппаратов и принципиальных схемах основных процессов биотехнологии;
- формирование у студентов умений пользоваться лабораторным оборудованием с соблюдением правил техники безопасности для проведения научно-исследовательских работ по моделированию, масштабированию и оптимизации биотехнологических схем, изучению процессов, протекающих в биореакторах и на стадиях переработки связанных с выделением и очисткой целевого продукта
- умение анализировать полученные данные результатов исследований и использовать полученные знания для интенсификации процессов, совершенствования конструкции аппаратов
- формирование навыков аналитической работы с информацией (учебной, научной, нормативно-справочной литературой и другими источниками), с информационными технологиями.

2. Место дисциплины в структуре основной образовательной программы

Дисциплина процессы и аппараты биотехнологических производств относится к базовой части образовательной программы

Процесс изучения дисциплины обеспечивает достижение планируемых результатов освоения образовательной программы и направлен на формирование следующих компетенций:

	Компетенция	Логическая связь
тао п	формунировко	с дисциплинами
код	формулировка	учебного плана
ОПК-3	Способность использовать знания о	Физика;
	современной физической картине мира,	Общая и неорганическая
	пространственно-временных	химия;
	закономерностях, строении вещества для	Органическая химия;
	понимания окружающего мира и явлений	Физическая химия;
	природы	Основы биохимии;
		Прикладная механика;
		Основы молекулярной
		биологии;
		Химия биологически активных
		веществ
ПК-2	Способность к реализации и управлению	Основы биотехнологии;
	биотехнологическими процессами	Теоретические основы
	•	биотехнологии;
		Системы управления
		биотехнологическими
		процессами;
		Электротехника и
		промышленная электроника;
		Массообменные процессы в
		биотехнологии;
		Технологические критерии
		эффективности
		биотехнологического
		производства;
		Биомедицинские системы и
		технологии;
		Медико-экологические
		информационные технологии
ПК-9	Способность проводить стандартные и	Промышленная технология
TIIC)	сертификационные испытания сырья,	лекарств;
	готовой продукции и технологических	Технология биологически
	процессов	активных веществ;
	процессов	Материаловедение в
		биотехнологии;
		Массообменные процессы в
		биотехнологии;
		·
		Метрология, стандартизация и
		сертификация
		биотехнологической
		продукции;
		Управление качеством
		биотехнологической продукции

Содержание компетенций (этапов формирования компетенций)

I/o	Формунировия	Этапы формирования и индикаторы достижения компетенции				
Код компетенции	Формулировка компетенции	Знает	Умеет	Владеет (имеет практический опыт)		
1	2	3	4	5		
ОПК-3	Способность использовать	- законы взаимодействия	- применять законы	- владеть терминами и		
	знания о современной	веществ, возможности их	взаимодействия веществ на	понятиями химических,		
	физической картине мира,	применения на практике, -	практике	физических явлений природы		
	пространственно-временных	основные химические и	- находить и обобщать	- навыками работы с		
	закономерностях, строении	физические явления	информацию о загрязнении	нормативными документами		
	вещества для понимания	- современные нормы	территории химическими	по безопасности		
	окружающего мира и явлений	химической, радиационной	веществами	- навыками работы с		
	природы	безопасности	- оценивать реальную	современными источниками		
		-основы биологического	опасность действия веществ	информации		
		действия веществ				
ПК-2	Способность к реализации и	- основные принципы	- оценивать основные	- методами оценки		
	управлению	организации	технологические параметры	технологических параметров		
	биотехнологическими	биотехнологического	биотехнологического	биотехнологического		
	процессами	процесса, его иерархическую	процесса и выбирать	производства		
		структуру	рациональную схему			
			производства			
ПК-9	Способность проводить	- основные стандарты	- работать со стандартными и	- навыками проведения		
	стандартные и	производства сырья, готовой	сертификационными	стандартных и		
	сертификационные	продукции и технологических	документами и использовать	сертификационных		
	испытания сырья, готовой	процессов	их	испытаний сырья, готовой		
	продукции и	- методы контроля качества		продукции и технологических		
	технологических процессов	новых образцов изделий,		процессов		
		узлов и деталей				

3. Разделы (темы) дисциплины и компетенции, которые формируются при их изучении:

Наименование раздела дисциплины	Содержание раздела	Код компетенций
	Особенности моделирования, масштабирования и оптимизации биотехнологических схем	ОПК-3,
Гидромеханические	и процессов. Основы прикладной гидравлики, законы гидростатики и гидродинамики,	ПК-2,
процессы и аппараты	расчет и выбор насосов; процессы разделения неоднородных систем: осаждение,	ПК-9
биотехнологии	фильтрование, центрифугирование, мембранные процессы, методы их интенсификации,	
	расчет и выбор аппаратов для проведения этих процессов.	
	Основы теории передачи теплоты. Конвективный теплообмен. Теплообмен излучением.	ОПК-3,
Таннариза нромасски и	Выпаривание. Тепловые процессы при нагревании, охлаждении, конденсации,	ПК-2,
Тепловые процессы и аппараты биотехнологии	выпаривании. Теплообменное оборудование. Методика расчета теплообменных	ПК-9
аппараты опотехнологии	аппаратов. Тепловые процессы в ферментаторах.	
Массообменные процессы	Массообменные процессы, основы массопередачи. Массопередача и потребление	ОПК-3,
и аппараты	кислорода при ферментации. Классификация массообменных аппаратов и их назначение.	ПК-2,
биотехнологии	Сорбционные процессы. Перегонка и ректификация. Сушка.	ПК-9
Маханинаакна пранасскі н	Физико-механические основы измельчения. Расход энергии. Измельчение,	ОПК-3,
Механические процессы и аппараты биотехнологии	гранулирование, смешение. Классификация и сортировка материалов. Оборудование	ПК-2,
аппараты опотехнологии	механических процессов.	ПК-9

4. Учебно-тематический план дисциплины (в академических часах)

	Контактная работа Из них		Внеаудиторная	Используемые образовательные технологии, способы и методы обучения		Формы текущего и		
Наименование раздела			T	(самостоятельная)	Итого	Итого		рубежного контроля
дисциплины	Всего	Лекции	Практичес кие занятия	работа студента (часы)	часов	Традиционные	Интерактивн ые	успеваемости
Гидромеханические процессы и	62	14	48	30	92	ЛТ СИ ЛР ПЗ УИРС НИРС		С ЛР Т КЗ
аппараты								

биотехнологии							
Тепловые процессы и	32	8	24	30	62	ЛТ СИ ЛР ПЗ	С ЛР Т КЗ
аппараты						УИРС НИРС	
биотехнологии							
Массообменные	45	12	33	30	75	ЛТ СИ ЛР ПЗ	С ЛР Т КЗ
процессы и аппараты						УИРС НИРС	
биотехнологии							
Механические	5	2	3	18	23	ЛТ СИ ЛР ПЗ	С ЛР Т КЗ
процессы и аппараты						УИРС НИРС	
биотехнологии							
Экзамен					36		Т, Пр., С
итого:					288		

4.1 Используемые образовательные технологии, способы и методы обучения

	J I	, woo bw 1 • 01 b 11 b 1 • 1 • 11 11 0 0 1	, , , , , , , , , , , , , , , , , , , ,
ЛТ	традиционная лекция	СИ	самостоятельное изучение тем, отраженных в программе, но
			не рассмотренных в аудиторных занятиях
ЛР	лабораторная работа	НИРС	научно-исследовательская работа студентов
ПЗ	практическое занятие	УИРС	учебно-исследовательская работа студента (составление информационного обзора литературы по предложенной тематике, подготовка реферата, подготовка эссе, доклада, написание курсовой работы, подготовка учебных схем, таблиц)

4.2 Формы текущего и рубежного контроля успеваемости

К3	комплексная оценка знаний	C	оценка по результатам собеседования (устный
			опрос)
ЛР	защита лабораторных работ	T	тестирование
Пр	оценка освоения практических навыков (умений,		
	владений)		

5. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- 1. Романков П.Г. Методы расчета процессов и аппаратов химической технологии (примеры и задачи) [Электронный ресурс] : учебное пособие для вузов / П.Г. Романков, В.Ф. Фролов, О.М. Флисюк. Электрон. текстовые данные. СПб. : ХИМИЗДАТ, 2017. 544 с. 978-5-93808-290-8. Режим доступа: http://www.iprbookshop.ru/67350.html
- 2. Разинов А.И. Процессы и аппараты химической технологии [Электронный ресурс] : учебное пособие / А.И. Разинов, А.В. Клинов, Г.С. Дьяконов. Электрон. текстовые данные. Казань: Казанский национальный исследовательский технологический университет, 2017. 860 с. 978-5-7882-2154-0. Режим доступа: http://www.iprbookshop.ru/75637.html
- 3. Федоров К.М. Процессы и аппараты пищевых производств. Лабораторные работы №1-5 [Электронный ресурс]: учебно-методическое пособие / К.М. Федоров, Ю.Н. Гуляева, А.Б. Дужий. Электрон. текстовые данные. СПб.: Университет ИТМО, Институт холода и биотехнологий, 2014. 57 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/68061.html
- Федоров К.М. Процессы и аппараты пищевых производств. Лабораторные работы №6-10 [Электронный ресурс]: учебно-методическое пособие / К.М. Федоров, Ю.Н. Гуляева, А.Б. Дужий. — Электрон. текстовые данные. — СПб.: Университет ИТМО, Институт холода и биотехнологий, 2014. — 67 с. — 2227-8397. — Режим доступа: http://www.iprbookshop.ru/68062.html

Дополнительная литература

- 1. Массообменные процессы в химической и пищевой технологии: Лабораторные и практические занятия: учеб. пособие для студентов вузов, обучающихся по направлениям подготовки: "Энерго- и ресурсосберегающие процессы в хим. технологии, нефтехимии и биотехнологии" (профиль "Машины и аппараты хим. производств"), "Технол. машины и оборудование" (профиль "Машины и аппараты пищевых производств" / Л. М. Титова, И. Ю. Алексанян, А. Х. Х. Нугманов. СПб.; М.; Краснодар: Лань, 2014. 224 с
- 2. Основные процессы и аппараты химической технологии : учеб. для студентов хим.-технол. специальностей вузов / А. Г. Касаткин. Стер. изд. Перепеч. с изд. 1973 г. М. : Альянс, 2014. 750 с. : рис., табл.
- 3. Методические рекомендации к выполнению курсового проекта по дисциплине "Процессы и аппараты химической технологии". Расчет кожухотрубчатых теплообменников [Электронный ресурс] / Курск. гос. мед. ун-т, каф. биол. и хим. технологий; сост. : Е. М. Кувардина, Л. П. Лазурина. Электрон. дан. Курск : КГМУ, 2008. 1 эл. опт. диск (CD-ROM). Систем. требования: Windows 98/2000/XP и выше ; Дисковод CD-ROM. Загл. [Информрегистр]: Процессы и аппараты химической технологии. № гос. регистрации 0320802521 URL: <a href="http://library.kursksmu.net/cgi-bin/irbis64r_15/cgiirbis_64.exe?LNG=&I21DBN=MIXED&P21DBN=MIXED&S21STN=1&S21REF=3&S21FMT=fullwebr&C21COM=S&S21CNR=10&S21P01=0&S21P02=0&S21P03=I=&S21STR=66%2FM%2054-777608

Периодические издания (журналы)

1. Химико-фармацевтический журнал

Электронное информационное обеспечение и Интернет-ресурсы

- 1. <u>Научная электронная библиотека «eLIBRARY.RU»</u> https://elibrary.ru/
- 2. Консультант плюс https://kurskmed.com/department/library/page/Consultant_Plus
- 3. <u>База данных международного индекса научного цитирования «WEB OF SCIENCE»</u> http://www.webofscience.com/
- 4. Полнотекстовой базе данных «Medline Complete» http://search.ebscohost.com/
- 5. Научная электронная библиотека «КиберЛенинка» https://cyberleninka.ru/

6. Материально-техническое обеспечение дисциплины

No.	Наименование специальных	Оснащенность специальных помещений и	Перечень лицензионного программного обеспечения.
п\п	помещений и помещений для	помещений для самостоятельной работы	Реквизиты подтверждающего документа
(самостоятельной работы		
1.	Российская Федерация, 305041, г.	Учебная аудитория для проведения занятий	1. Программа для создания тестов — Adit Testdesk, договор
	Курск, ул. Ямская, д. 18, 2 этаж,	лекционного и семинарского типа, курсового	№ 444 от 22.06.2010
	каб. №209	проектирования (выполнения курсовых работ),	2. Программа для организации дистанционного обучения —
		групповых и индивидуальных консультаций,	ISpring Suite 7.1, договор № 652 от 21.09.2015
		текущего контроля и промежуточной аттестации:	3. Пакет офисного ПО – Microsoft Win Office Pro Plus 2010
		специализированная мебель (учебная мебель, доска,	RUS OLP NL, договор № 548 от 16.08.2010
		трибуна лекторская); технические средства обучения и	4. Операционная система — Microsoft Win Pro 7, договор №
		демонстрационное оборудование (проектор, ноутбук,	904 от 24.12.2010
		экран); учебно-наглядные пособия, обеспечивающие	5. Антивирус – Kaspersky Endpoint Security, договор № 832 от
		тематические иллюстрации.	15.10.2018
2.	Российская Федерация, 305041, г.	Учебная аудитория для проведения занятий	-
	Курск, ул. Ямская, д. 18, 2 этаж,	семинарского типа, курсового проектирования	
	каб. №213	(выполнения курсовых работ), групповых и	
		индивидуальных консультаций, текущего	
		контроля и промежуточной аттестации:	
		специализированная мебель (учебная мебель, стол	
	202011	лабораторный химический).	
3.	Российская Федерация, 305041, г.	Лаборатории, оснащенные лабораторным	1. Программа для создания тестов — Adit Testdesk, договор
	Курск, ул. Ямская, д. 18, 2 этаж,	оборудованием: специализированная мебель (учебная	№ 444 ot 22.06.2010
	каб. №222 (лаборатория)	мебель, доска ученическая, стол компьютерный);	2. Программа для организации дистанционного обучения —
		технические средства обучения (компьютеры).	ISpring Suite 7.1, договор № 652 от 21.09.2015
			3. Пакет офисного ПО – Microsoft Win Office Pro Plus 2010
			RUS OLP NL, договор № 548 от 16.08.2010
			4. Операционная система — Microsoft Win Pro 7, договор № 904 от 24.12.2010
			5. Антивирус – Kaspersky Endpoint Security, договор № 832 от 15.10.2018

7. Оценочные средства

Примерная тематика курсовых пректов:

- 1. Расчет теплообменника для охлаждения этилацетата
- 2. Расчет теплообменника для охлаждения бензола
- 3. Расчет теплообменника для охлаждения толуола
- 4. Расчет теплообменника для охлаждения бутанола
- 5. Расчет теплообменника для охлаждения бутилового эфира
- 6. Расчет теплообменника для охлаждения пиридина
- 7. Расчет теплообменника для охлаждения пропанола
- 8. Расчет теплообменника для охлаждения циклогексана
- 9. Расчет теплообменника для охлаждения ацетофенона
- 10. Расчет теплообменника для охлаждения гексана
- 11. Расчет теплообменника для нагрева дихлорэтана
- 12. Расчет теплообменника для нагрева этанола
- 13. Расчет теплообменника для нагрева бензиламина
- 14. Расчет теплообменника для нагрева этилацетата
- 15. Расчет теплообменника для нагрева пропилового эфира
- 16. Расчет теплообменника для нагрева ацетонитрила
- 17. Расчет теплообменника для нагрева ацетона
- 18. Расчет теплообменника для нагрева четыреххлористого углерода
- 19. Расчет теплообменника для нагрева метилацетата
- 20. Расчет теплообменника для нагрева бромбензола

Вопросы для письменной части экзамена

- 1. Цели и задачи дисциплины ПАБТ
- 2. Классификация основных технологических процессов
- 3. Общие принципы анализа и расчетов процессов и аппаратов
- 4. Критерии подобия. Этапы исследования процессов методом теории подобия.
- 5. Теоремы подобия и их назначение
- 6. Классификация жидкостей
- 7. Физические свойства жидкостей
- 8. Вязкость, сила внутреннего трения, закон внутреннего трения Ньютона.
- 9. Гидростатика. Гидростатическое давление
- 10. Реологические модели жидкости
- 11. Дифференциальные уравнения равновесия Эйлера для покоящейся жидкости
- 12. Основное уравнение гидростатики
- 13. Закон Паскаля
- 14. Принцип измерении давлений с помощью дифференциальных U-образных манометров
- 15. Пневматическое измерение количества жидкости в подземных резервуарах
- 16. Принцип работы гидростатических машин
- 17. Движущая сила течения жидкости
- 18. Основные задачи гидродинамики
- 19. Основные параметры течения жидкости
- 20. Установившиеся и неустановившиеся потоки
- 21. Уравнение неразрывности (сплошности) потока
- 22. Режимы движения жидкостей
- 23. Распределение скоростей в движущемся потоке жидкости и законы, описывающие распределение скоростей
- 24. Профили скоростей потоков при различных режимах течения жидкости
- 25. Истинная и осредненная скорость жидкости при турбулентном течении

- 26. Основные характеристики турбулизации потока
- 27. Дифференциальные уравнения движения жидкости
- 28. Дифференциальные уравнения движения Навье-Стокса
- 29. Уравнение Бернулли
- 30. Уравнение Бернулли для идеальной жидкости
- 31. Уравнение Бернулли для реальной жидкости
- 32. Геометрическая интерпретация уравнения Бернулли
- 33. Измерение скорости потока и расхода жидкости
- 34. Истечение жидкости через насадки и отверстия
- 35. Гидродинамическое подобие
- 36. Расчет гидравлического сопротивления при движении реальных жидкостей в трубопроводах и каналах
- 37. Определение коэффициент трения λ при движении жидкости в трубах и каналах
- 38. Потери напора на преодоление местных сопротивлений
- 39. Уравнение Стокса для процесса осаждения. Верхний и нижний предел применимости закона Стокса
- 40. Определение скорости осаждения методом Лященко
- 41. Режимы осаждения в жидкостях.
- 42. Соотношение между действительной и фиктивной скоростями
- 43. Определение коэффициента сопротивления для различных режимов течения в зернистом слое?
- 44. Гидродинамическая сущность процесса псевдоожижения
- 45. Основные стадии процесса псевдоожижения. Кривая псевдоожижения
- 46. Оценка пределов существования псевдоожиженного слоя
- 47. Характеристики зернистого слоя.
- 48. Характер изменения характеристик слоя зернистого материала в зависимости от изменения скорости газа.
- 49. Параметры, влияющие на критические скорости слоя зернистого материала.
- 50. Критериальные уравнения псевдоожижения. Графические зависимости критерия Лященко от критерия Архимеда.
- 51. Неоднородные системы. Фазы вещества в системах.
- 52. Классификация и характеристики неоднородных систем
- 53. Эффективность процесса разделения
- 54. Режимы осаждения.
- 55. Определение скорости осаждения методом приближений.
- 56. Определение скорости осаждения методом Лященко.
- 57. Кинетическая кривая осаждения.
- 58. Критериальные уравнения осаждения.
- 59. Сила сопротивления при оседании одиночных частиц.
- 60. Назначение гравитационного осаждения. Достоинства и недостатки
- 61. Сущность (технология) процесса гравитационного осаждения. Условия проведения процесса.
- 62. Свободное и солидарное осаждение частиц
- 63. Производительность отстойного аппарата при свободном осаждении
- 64. Принцип действия основных групп отстойников
- 65. Назначение и сущность процесса осаждения в поле центробежных сил. Технические приемы для осуществления процесса.
- 66. Центробежное осаждение
- 67. Назначение циклонного процесса. Его сущность. Аппаратурное оформление циклонных процессов
- 68. Классификация центрифуг и принцип работы центрифуг различных типов
- 69. Классификация процессов фильтрования.

- 70. Сущность фильтрации с образованием осадка, с закупориванием пор, осветления и сгущения.
- 71. Основное уравнение фильтрации.
- 72. Особенности режима фильтрования под постоянным давлением
- 73. Вывод уравнения фильтрования при постоянной разности давлений. Его физический смысл
- 74. Аппаратурное оформление процесса фильтрации при постоянной разности давлений
- 75. Вывод уравнения фильтрования при постоянной скорости. Его физический смысл
- 76. Аппаратурное оформление процесса фильтрации при постоянной скорости процесса.
- Уравнение фильтрования при постоянных разности давлений и скорости. Его физический смысл
- 78. Методика определения постоянных в уравнениях фильтрования
- 79. Основные пути интенсификации процесса фильтрации
- 80. Назначение, сущность и основные этапы процесса центробежного фильтрования
- 81. Зависимость для расчета времени центробежного фильтрования
- 82. Назначение перемешивания и основные способы перемешивания
- 83. Мощность механического перемешивания
- 84. Основные части механических перемешивающих устройств
- 85. Конструкции механических мешалок
- 86. Типы потоков жидкости, создаваемых мешалками
- 87. Назначение, устройство и принцип работы лопастных мешалок. Достоинства и недостатки лопастных мешалок
- 88. Назначение, устройство и принцип работы пропеллерных мешалок Достоинства и недостатки пропеллерных мешалок
- 89. Назначение, устройство и принцип работы турбинных мешалок

Достоинства и недостатки турбинных мешалок

- 90. Назначение якорных и рамных мешалок
- 91. Назначение и принцип работы листовых мешалок
- 92. Назначение и принцип работы барабанных мешалок
- 93. Назначение и принцип работы вибрационных мешалок
- 94. Интенсивность перемешивания
- 95. Пневматическое перемешивание
- 96. Циркуляционное перемешивание
- 97. Поточное перемешивание
- 98. Механизмы переноса тепла.
- 99. Уравнение Фурье. Коэффициент теплопроводности
- 100.Основное уравнение конвективного теплообмена. Коэффициент теплоотдачи
- 101. Дифференциальное уравнение теплопроводности. Коэффициент температуропроводности
- 102. Уравнения теплопроводности для плоской, цилиндрической и сферической стенок при стационарном режиме.
- 103. Конвективный теплообмен. Зависимость скорости конвективного теплообмена от внешних факторов
- 104. Дифференциальные уравнения конвективного теплообмена
- 105. Основные критерии стационарного теплообмена и их физический смысл
- 106. Критериальные уравнения стационарного теплообмена
- 107. Нестационарные процессы переноса тепла. Основные критерии нестационарного теплообмена и их физический смысл
- 108. Критериальные уравнения нестационарного теплообмена
- 109. Коэффициенты конвективной теплоотдачи
- 110.Основные законы излучения
- 111. Коэффициент теплоотдачи излучением

- 112.Определение Q при теплообмене между твердыми телами
- 113. Тепловое излучение газов и паров
- 114. Назначение и классификация теплообменных аппаратов
- 115. Рекуперативные теплообменные аппараты
- 116.Регенераторы
- 117.Смесительные теплообменные аппараты
- 118. Промышленные теплоносители
- 119. Принцип работы основных типов теплообменных аппаратов
- 120.Понятия сухой насыщенный пар, влажный пар, степень влажности, степень сухости пара, перегретый пар.
- 121.PV диаграмма водяного пара. Основные линии, точки, области.
- 122.TS диаграмма водяного пара. Основные линии, точки, области.
- 123.IS диаграмма водяного пара. Основные линии, точки, области.
- 124. Таблицы воды и водяного пара
- 125. Назначение и цели процесса выпаривания
- 126. Теплоносители при выпаривании
- 127. Методы выпаривания растворов
- 128.Основные величины, характеризующие работу выпарного аппарата
- 129. Материальный баланс процесса выпаривания
- 130. Тепловой баланс выпаривания
- 131. Температурный режим выпарного аппарата
- 132. Факторы, определяющие интенсивность выпаривания и производительность выпарного аппарата
- 133. Принцип работы основных типов выпарных аппаратов
- 134. Принцип работы одноступенчатых выпарных аппаратов
- 135.Принцип работы многоступенчатых выпарных аппаратов
- 136.Понятие массопередачи и массотдачи
- 137. Технологическая связь между реакционными и разделительными аппаратами
- 138. Основные виды процессов в разделительных аппаратах
- 139. Классификация массобменных процессов
- 140. Механизм массопередачи. Схема массообмена между фазами.
- 141. Движущая сила массообменных процессов
- 142. Материальный баланс при массопередаче
- 143. Рабочая линия массообменного процесса. Направление массопередачи
- 144. Первый закон Фика
- 145. Закон массопередачи Щукарева
- 146.Коэффициент массоотдачи
- 147. Критериальные уравнения массоотдачи
- 148. Физический смысл массообменных критериев: Нуссельта, Фурье, Пекле, Прандтля.
- 149.Основные положения и следствия теории массобмена Льюса и Уитмена
- 150. Основные положения и следствия теории массообмена Хигби
- 151.Основные положения и следствия теории массообмена Данкверта
- 152. Коэффициент распределения компонента в фазах
- 153.Особенности массообмена биотехнологических процессов
- 154.Особенности массообмена на различных этапах жизни культуры микроорганизмов (анализ кривой роста)
- 155.Общая скорость роста биомассы. Удельная скорость роста. Её графическое и экспериментальное определение
- 156. Кинетическое уравнение переноса кислорода при ферментации и его преобразование при определении поверхности раздела фаз
- 157. Практическое нахождение скорости усвоения кислорода
- 158. Понятие абсорбция. Виды абсорбции

- 159. Абсорбция как массообменный процесс. Назначение абсорбции
- 160.Зависимость между равновесными концентрациями при абсорбции (з-н Генри)
- 161. Парциальные давления компонентов в газовой среде при абсорбции (з-н Дальтона)
- 162. Уравнение массопередачи при абсорбции
- 163. Материальный баланс процесса абсорбции
- 164. Определение удельного расхода абсорбента
- 165. Принципиальные схемы абсорбции (прямоточная, противоточная, с рециркуляцией). Изображение процессов абсорбции в х-у координатах
- 166.Схема и принцип работы поверхностного абсорбера
- 167.Схема и принцип работы пленочного абсорбера
- 168.Схема и принцип работы насадочного абсорбера
- 169. Схема и принцип работы распыливающего абсорбера
- 170.Основные определяемые параметры при расчете абсорберов. Порядок расчета абсорберов
- 171. Промышленные абсорбенты и требования к ним
- 172. Адсорбция как массообменный процесс. Назначение адсорбции
- 173.Основные виды промышленных адсорбентов и их характеристики
- 174. Равновесие в адсорбционных процессах
- 175.Изотермы Лэнгмюра
- 176. Кинетика адсорбции
- 177. Уравнение Шилова для фронта адсорбции
- 178. Уравнение скорости перемещения фронта адсорбции
- 179.Определение высоты слоя адсорбента
- 180. Классификация адсорбентов
- 181.Схема и принцип работы вертикального цилиндрического адсорбера
- 182.Схема и принцип работы вертикального адсорбера с неподвижным кольцевым слоем адсорбента
- 183.Схема и принцип работы адсорбера с псевдоожиженным слоем
- 184.Основные определяемые параметры при расчете адсорберов. Порядок расчета адсорберов
- 185. Фазовое равновесие в бинарных системах
- 186. Диаграмма t-х-у
- 187. Диаграмма у-х
- 188.Взаимное расположение кривых на t-х-у иу-х диаграммах (з-ны Коновалова, Вревского)
- 189. t-х-у и у-х диаграммы реальных газовых смесей при неограниченной растворимости компонентов
- 190. Азеотропные смеси
- 191. t-x-у и у-х диаграммы для взаимно нерастворимых жидкостей
- 192. t-x-y и у-х диаграммы для ограниченно растворимых жидкостей
- 193. Классификация основных способов разделения смесей
- 194. Перегонка бинарных смесей. Принцип простой перегонки и ректификации
- 195. Фракционная перегонка
- 196. Перегонка с дефлегмацией
- 197. Перегонка с водяным паром
- 198. Молекулярная дистилляция
- 199. Принципиальная схема ректификации
- 200. Материальный баланс ректификации
- 201. Уравнения рабочих линий ректификационной колонны
- 202. Схема и принцип работы периодической ректификационной установки
- 203. Схема и принцип работы непрерывно действующей ректификационной установки
- 204. Барботажная ректификационная колонна

- 205. Насадочная колонна
- 206.Пленочные ректификационные аппараты
- 207. Тарельчатые колонны
- 208. Азеотропная ректификация.
- 209. Тепловой баланс ректификации
- 210.Основные параметры ректификационной колонны. Принцип расчета.
- 211. Цели сушки. Физическая сущность сушки
- 212.Основные виды сушки
- 213. Сушильные агенты. Влажный воздух.
- 214.Основные показатели влажного воздуха
- 215. Диаграмма Рамзина. Примеры использования диаграммы для определения параметров влажного воздуха
- 216. Равновесие процесса сушки. Направление массопереноса при сушке
- 217. Формы связи влаги с материалом и рекомендуемые способы ее удаления при получении готового продукта
- 218. Материальный баланс сушки (по высушиваемому материалу, по сушильному агенту, определение удельного расхода воздуха на сушку)
- 219.Тепловой баланс конвективных сушилок
- 220. Кинетика процесса сушки
- 221. Основные периоды сушки. Кривая сушки материала

Банк профессионально-ориентированных ситуационных задач для экзамена

Задача 1

Во время опытного фильтрования водной суспензии с содержанием 13,9% карбоната кальция при 20 0 C на фильтре площадью F = 0,1 2 M и толщиной осадка 50 мм были получены данные:

	1	, '	<u> </u>
Избыточное	Собрано фильтрата,	Время от начала	Влажность осадка, % от начально
давление, Па	ДМ ³	опыта, с	массы
$3,43 \times 10^4$	2,92	146	37
	7,80	888	

Определить:

- 1. Объем фильтрата V_1 (M^3/M^2), прошедшего через фильтр и время процесса τ_1 (ч)
- 2. Объем V_2 и время τ_2
- 3. Константы фильтрации $K(M^2/4)$ и $C(M^3/M^2)$
- 4. Массу влажного осадка в расчете на 1 кг сухого вещества m (кг/кг)
- 5. Удельное сопротивление осадка г (м/ кг)

Задача 2

Для интенсификации процесса биологической очистки сточных вод использовали шаровидный кварцевый песок в качестве носителя частиц активного ила. После завершения процесса биодеградации воду направили во вторичный отстойник для осаждения. Плотность песка $2650 \, \mathrm{kr/m}^3$, температура воды $20 \, ^0\mathrm{C}$, средняя масса частицы $0,5 \, \mathrm{грамма}$.

Определите:

- 1. Основные параметры воды (р, ц) в условиях процесса по табличным данным
- 2. Критерий Архимеда в процессе
- 3. Критерий Рейнольдса в процессе
- 4. Эквивалентный диаметр частиц песка
- 5. Скорость оседания частиц песка

Задача 3

Стенка печи состоит из трех слоев: 1- внутренний слой: шамотный кирпич, толщиной $\delta_1 = 120$ мм, теплопроводностью $\lambda_1 = 0.81$ Вт/м K; 2 слой – изоляционный кирпич: $\delta_2 = 65$ мм, $\lambda_2 = 0.23$ Вт/м K; 3 слой – стальной кожух: $\delta_2 = 10$ мм, $\lambda_2 = 45$ Вт/м K. Температура в печи $800\,^{0}$ С, окружающего воздуха $30\,^{0}$ С. Коэффициенты теплоотдачи с внутренней и наружной стороны печи: $\alpha_1 = 69.6$ Вт/м 2 K; $\alpha_2 = 13.9$ Вт/м 2 K.

Определите:

- 1. Тепловые сопротивления слоев стенки r_i (M^2 K/BT)
- 2. Тепловые сопротивления теплоносителей $r_{r.t.}$, $r_{x.t.}$ (м²К/Вт)
- 3. Общее тепловое сопротивление $R(M^2K/BT)$
- 4. Плотность теплового потока $q(BT/M^2)$
- 5. Коэффициент теплопередачи k (Bт/м²K)

Задача 4

Воздух насыщен паром этилового спирта. Общее давление воздушно- паровой смеси 600 мм.рт.ст., температура $60~^{0}$ С. Принимая оба компонента смеси за идеальный газ, **Определите**:

- 1. Давление этилового спирта в смеси $P_{\text{спирта}}$, Па
- 2. Мольную долю этилового спирта в смеси, у
- 3. Массовую долю спирта в смеси, \bar{y}
- 4. Относительную массовую концентрацию спирта в смеси, \bar{Y}
- 5. Плотность смеси, ρ (кг/м³)

Задача 5

В одиночном выпарном аппарате осуществляется процесс непрерывного концентрирования раствора NaOH. Расход начального раствора 2 т/ч, его концентрация 14,1 % (масс), конечная концентрация 24,1% (масс). Температура греющего пара 150 0 С. Давление вторичного пара в аппарате атмосферное. Тепловые потери аппарата составляют 58 000 Вт. Начальная температура раствора 20 0 С.

Определите:

- 1. Теплоемкость исходного раствора (по эмпирической формуле)
- 2. Расход тепла на нагревание раствора от начальной до конечной температуры
- 3. Температуру выводимого из аппарата конечного раствора (по справочным данным). При этой температуре определите энтальпию вторичного пара и теплоемкость воды (по справочным данным)
- 4. Определите общее количество теплоты в процессе
- 5. Определите расход греющего пара

Задача 6

При проведении аэробного культивирования в ферментаторе диаметром 1,5 метра через культуральную среду барботируют воздух. Концентрация абсолютно сухой биомассы в культуральной жидкости 20%. Объем жидкостной фазы в ферментаторе - 4 м^3 . Объемный коэффициент массоотдачи – 3.5×10^{-3} 1/c. Температура – $30 \, ^{0}$ C.

Определите:

- 1. Запишите уравнение объемного расхода воздуха и критериальные уравнения для определения приведенной скорости подачи воздуха
- 2.Определите плотность культуральной жидкости, коэффициент поверхностного натяжения и кинематическую вязкость при температуре ферментации
- 3. Определите капиллярную постоянную в критериях Шервуда и Рейнольдса

- 4. Найдите приведенную скорость подачи воздуха
- 5. Определите требуемый объемный расход воздуха

Задача 7

При культивировании дрожжей получены следующие контрольные данные:

Начальная концентрация биомассы — 38,7 г/л. Конечная концентрация — 41,1 г/л

Количество биомассы в объеме жидкости на начало культивирования $-560~\rm kr$, на конец $-1025~\rm kr$. Время культивирования $-7~\rm часов$. Объемное газосодержание -0.3. Удельная поверхность контакта фаз $-2.4~\rm m^2/m^3$

Определите:

- 1. Запишите уравнение скорости потребления кислорода клетками и проинтегрируйте его
- 2. Определите постоянные интегрирования (У и Z)
- 3. Определите удельную скорость роста дрожжей
- 4. Определите поверхностный коэффициент массоотдачи в жидкой фазе
- 5. Определите объемный коэффициент массоотдачи

Задача 8

Теплообмен между нагретой вертикальной стенкой реакционного сосуда и водой осуществляется в условиях свободной конвекции. Высота вертикальной стенки сосуда $0.9\,\mathrm{M}$. Температура стенки $35\,^{0}\mathrm{C}$. Температура воды $21\,^{0}\mathrm{C}$.

Определите:

- 1. Определяющую температуру процесса и основные константы воды при этой температуре $(\rho, \mu, c, \beta, \lambda)$ по табличным данным
- 2. Критерий Грасгофа процесса
- 3. Критерий Прандтля процесса
- 4. Критерий Нуссельта процесса
- 5. Коэффициент теплоотдачи от стенки к воде

Задача 9

В ректификационной колонне непрерывного действия происходит разделение смеси хлороформ-бензол под атмосферным давлением. Концентрация хлороформа в исходной смеси 40% мол., дистилляте 85% мол. и кубовом остатке 5 % мол.

Определите:

- 1. Составьте уравнения рабочих концентраций
- 2. Постройте кривую равновесия
- 3. Постройте рабочую линию верхней части ректификационной колонны
- 4. Постройте рабочую линию нижней частей ректификационной колонны
- 5. Определите графическим методом ЧТТ (число теоретических тарелок).

Задача 10

Уравнения рабочих линий ректификационной колонны для разделения смеси метиловый спирт — вода при P=0,1 м Π а: y=0,62x+0,35; y=2,9x-0,056. В ректификационной колонне получают 1570 кг/ч дистиллята.

Определите:

- 1. Состав исходной смеси хс
- 2. Количество исходной смеси \overline{G}_{C} (в кг/ч)
- 3. Количество кубового остатка G_{K} (в кмоль/ч)
- 4. Количество пара G , поднимающегося по колонне
- 5. Количество флегмы G_{Φ} (в кмоль/ч).

База типовых тестовых заданий для экзамена

1. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Что такое поток жидкости?

- а) множество линий тока жидкости;
- б) совокупность элементарных струек жидкости;
- в) совокупность трубок тока жидкости;
- г) поперечное сечение.

2. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Отношение расхода жидкости к площади живого сечения называется

- а) средний расход потока жидкости;
- б) средняя скорость потока;
- в) максимальная скорость потока;
- г) минимальный расход потока

3. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Что понимается под напорным потоком жидкости?

- а) поток жидкости, ограниченный твердыми стенками не со всех сторон;
- б) совокупность элементарных струек жидкости;
- в) поток жидкости, ограниченный твердыми стенками со всех сторон;
- г) совокупность трубок тока.

4. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Объемный расход жидкости – это..... проходящее через живое сечение потока в единицу времени

- а) количество жидкости
- б) объем жидкости
- в) масса жидкости
- г) вес жидкости

5. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Элементарная струйка – это

- а) трубка тока бесконечно малого сечения, окруженная линиями тока;
- б) часть потока, заключенная внутри трубки тока;
- в) объем потока, движущийся вдоль линии тока;
- г) неразрывный поток с произвольной траекторией.

7. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Турбулентный режим движения жидкости— это режим, при котором частицы жидкости

- а) сохраняют определенный строй (движутся послойно);
- б) перемещаются в трубопроводе, перемешиваясь, хаотично;
- в) двигаются как послойно, так и бессистемно;
- г) двигаются послойно только в центре трубопровода.

8. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Какой будет режим движения жидкости (в круглом трубопроводе), если число Рейнольдса Re = 9000?

- а) ламинарный;
- б) турбулентный;
- в) переходный;

г) установившийся.

9. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

От каких параметров зависит число Рейнольдса Re?

- а) диаметра трубопровода и скорости жидкости;
- б) диаметра трубопровода, максимальной скорости жидкости и кинематического коэффициента вязкости жидкости;
- в) средней скорости жидкости, гидравлического диаметра трубопровода и кинематического коэффициента вязкости жидкости;
- г) расхода жидкости.

10. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

При каком режиме движения жидкости в трубопроводе пульсации скоростей и давлений не происходит?

- а) при отсутствии движения жидкости;
- б) при спокойном;
- в) при турбулентном;
- г) при ламинарном.

11. УКАЖИТЕ ПРАВИЛЬНЫЕ ОТВЕТЫ

Фильтрация может проходить под действием сил

- а) центробежных
- б) гравитационных
- в) инерционных
- г) электростатических
- д) поверхностных

12. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

При очистном фильтровании целевым продуктом является

- а) фильтрат
- б) фильтрующий материал
- в) осадок
- г) промывная жидкость

13. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Если с увеличением толщины слоя осадка увеличивается давление над осадком, скорость фильтрования

- а) не изменяется
- б) возрастает
- в) уменьшается
- г) давление никак не влияет на скорость фильтрации

14. УСТАНОВИТЕ СООТВЕТСТВИЕ:

НАЗВАНИЕ ОБОРУДОВАНИЯ	CXEMA
1. Друк-фильтр	A)
2. Патронный фильтр	g
3. Нутч-фильтр	B)

15. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Основное преимущество выпаривания под вакуумом

- а) более низкие температуры кипения
- б) большая герметичность оборудования
- в) высокая скорость процесса
- г) возможность упаривания вязких жидкостей

16. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Основное достоинство пленочного испарителя с поднимающейся пленкой жидкости

- а) большая полезная разность температур
- б) короткое время пребывания раствора в зоне высокой температуры
- в) низкое гидравлическое сопротивление
- г) различные скорости нагревания в трубах испарителя

17. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Температура кипения раствора с увеличением концентрации

- а) возрастает
- б) снижается
- в) не меняется
- г) сначала увеличивается, потом уменьшается

18. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Продолжительность непрерывной работы выпарного аппарата ограничивается

а) отложением накипи внутри кипятильных труб

- б) прогаром кипятильных труб
- в) накоплением отложений в межтрубной полости
- г) различными факторами

19. УСТАНОВИТЕ СООТВЕТСТВИЯ

ТИП ВЫПАРНОГО АППАРАТА (ВА)	CXEMA
	,
1. ВА с сосной нагревательной камерой	A)
2. ВА с внутренней вертикальной нагревательной камерой	Б)
3. Пленочный ВА	B)

20. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Массообменными называют процессы, скорость которых определяется:

- а) разностью концентраций распределяющего и распределяемого веществ
- б) скоростью переноса вещества в пределах одной фазы

- в) площадью межфазной границы
- г) скоростью переноса вещества из одной фазы в другую

21. УКАЖИТЕ ПРАВИЛЬНЫЕ ОТВЕТЫ

К массообменным относят процессы:

- а) сорбционные
- б) гидродинамические
- в) мембранные
- г) диффузионные
- д) механические

22. УКАЖИТЕ ПРАВИЛЬНЫЕ ОТВЕТЫ

Основные процессы в разделительных массообменных аппаратах:

- а) фильтрация
- б) ректификация
- в) сушка
- г) отстаивание
- д) кристаллизация

23. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Какой вид имеет рабочая линия массобменного процесса

- а) выпуклая линия
- б) прямая линия
- в) вогнутая линия
- г) ломаная линия

24. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

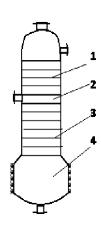
Основной закон массоотдачи:

a)
$$dM = \beta_v (y_f - y_z) F d\tau$$

6)
$$\frac{\partial \overline{C}}{\partial \tau} = D \left(\frac{\partial^2 \overline{C}}{\partial x^2} + \frac{\partial^2 \overline{C}}{\partial y^2} + \frac{\partial^2 \overline{C}}{\partial z^2} \right)$$

$$B) dM = -D \frac{\partial \overline{C}}{\partial l} F d\tau$$

25. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ


Процесс ректификации может использоваться для разделения

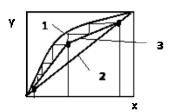
- а) однокомпонентных систем
- б) многокомпонентных систем
- в) взаимонерастворимых систем
- г) коллоидных систем

26. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

На рисунке приведена схема ректификационной колонны. Ка кая часть колонны обозначена цифрой 1?

- а) укрепляющая
- б) исчерпывающая
- в) подогреватель
- г) питающая

27. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ


На диаграмме фазового равновесия точка, в которой составы пара и жидкости одинаковы называется

- а) нулевой
- б) азеотропной
- в) начальной
 - г) максимальной

28. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Линия 2 на рисунке является линией

- а) равновесных концентраций
- б) рабочей концентрации
- в) граничной
- г) пара

29. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Контактная сушка осуществляется путем:

- а) передачи тепла от теплоносителя материалу через разделяющую стенку
- б) осущения в глубоком вакууме из замороженного состояния
- в) передачи тепла инфракрасными лучами
- г) непосредственного соприкосновения высушиваемого материала с сушильным агентом
- д) нагревания в поле тока высокой частоты

30. УКАЖИТЕ ПРАВИЛЬНЫЙ ОТВЕТ

Диаграмма Рамзина построена для давления:

- а) 760 мм. рт. ст
- б) 745 мм. рт.ст
- в) 101 КПа
- г) 1 атм.